33,690 research outputs found

    Wetland restoration and nitrate reduction: the example of the periurban wetland of Vitoria-Gasteiz (Basque Country, North Spain)

    Get PDF
    Changes in land use and agricultural intensification caused wetlands on the quaternary aquifer of Vitoria-Gasteiz (Basque Country) to disappear some years ago and nitrate concentration in groundwaters increased very quickly. The Basque Government recently declared the East Sector of this aquifer a Vulnerable Zone according to the 91/676/CEE European Directive. Recently, the wetlands have been restored through the closure of the main drainage ditches, the consequent elevation of the water table and the abondonment of agricultural practices near the wetlands. This is the case of the Zurbano wetland. Restoration has allowed the recovery of its biogeochemical function, which has reduced nitrate concentrations in waters. Nitrate concentrations which exceed 50 mg l–1 in groundwaters entering into the wetland are less than 10 mg l–1 at the outlet. Conditions in the wetland are conducive to the loss of nitrates: organic matter rich wetted soils, clay presence allowing a local semiconfined flow and very low hydraulic gradient. Water quality monitoring at several points around the wetland showed the processes involved in nitrate loss, although some aspects still remain unresolved. However, during storm events, the wetland effectively reduces the nitrate concentration entering the Alegria River, the most important river on the quaternary aquifer

    Quantum computation with unknown parameters

    Get PDF
    We show how it is possible to realize quantum computations on a system in which most of the parameters are practically unknown. We illustrate our results with a novel implementation of a quantum computer by means of bosonic atoms in an optical lattice. In particular we show how a universal set of gates can be carried out even if the number of atoms per site is uncertain.Comment: 3 figure

    Strong and weak thermalization of infinite non-integrable quantum systems

    Full text link
    When a non-integrable system evolves out of equilibrium for a long time, local observables are expected to attain stationary expectation values, independent of the details of the initial state. However, intriguing experimental results with ultracold gases have shown no thermalization in non-integrable settings, triggering an intense theoretical effort to decide the question. Here we show that the phenomenology of thermalization in a quantum system is much richer than its classical counterpart. Using a new numerical technique, we identify two distinct thermalization regimes, strong and weak, occurring for different initial states. Strong thermalization, intrinsically quantum, happens when instantaneous local expectation values converge to the thermal ones. Weak thermalization, well-known in classical systems, happens when local expectation values converge to the thermal ones only after time averaging. Remarkably, we find a third group of states showing no thermalization, neither strong nor weak, to the time scales one can reliably simulate.Comment: 12 pages, 21 figures, including additional materia

    The Enskog equation for confined elastic hard spheres

    Full text link
    A kinetic equation for a system of elastic hard spheres or disks confined by a hard wall of arbitrary shape is derived. It is a generalization of the modified Enskog equation in which the effects of the confinement are taken into account and it is supposed to be valid up to moderate densities. From the equation, balance equations for the hydrodynamic fields are derived, identifying the collisional transfer contributions to the pressure tensor and heat flux. A Lyapunov functional, H[f]\mathcal{H}[f], is identified. For any solution of the kinetic equation, H\mathcal{H} decays monotonically in time until the system reaches the inhomogeneous equilibrium distribution, that is a Maxwellian distribution with a the density field consistent with equilibrium statistical mechanics
    • …
    corecore